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ABSTRACT 
  
The European Space Operations Center (ESOC) plans 
a third low Earth orbit observation satellite, ENVISAT, 
following on from ERS-1 and ERS-2. ESOC requires 
control of the satellite ground track to ±1 km, placing a 
strong constraint on the accuracy of thermospheric 
density modeling and forecasts of the solar and 
geomagnetic indices that parameterize density models. 
This paper addresses the accuracy of an index forecast 
model developed by the British Geological Survey 
(BGS) for ESOC and used during the ERS satellite 
missions. Forecast accuracy is shown to have been 
better than expected although an improved model for 
the Ap geomagnetic index is provided. We also 
examine the time series of drag coefficients, Cd, for the 
ERS satellites, in relation to readily available solar and 
geomagnetic data. Simple regression models are shown 
to reduce the standard deviation in Cd about the mean 
by about one fifth, suggesting scope for improvements 
in density modeling. 
 

1. INTRODUCTION 
 
ESOC currently uses the model MSIS for atmospheric 
density estimates when calculating frictional drag on 
low Earth orbit satellites such as ERS-1, ERS-2 and, in 
the future, ENVISAT. MSIS is parameterised by the 
geomagnetic activity index Ap, the solar radio flux at 
10.7 cm wavelength, F10.7, as well as the 81-day 
smoothed F10.7 [1]. Accurate future density estimates 
for satellite orbit control and manoeuver planning, 
within the precision afforded by the MSIS algorithm, 
clearly depend on a good prediction of future values of 
Ap and F10.7. In a previous study for ESOC [2] BGS 
constructed a software package for the forecasting of 
these indices up to 27 days ahead. This software, 
PDFLAP (understood as ‘Prediction of Flux and Ap’), 
has now been in operation since 1992.  
 
A typical PDFLAP forecast of F10.7 is shown in Fig. 1. 
Approximate 50% and 95% confidence limits are 
provided with the forecast. The PDFLAP algorithm is 
linear autoregression, where coefficients are 
recalculated daily to reflect changing solar and 
geomagnetic conditions. The F10.7 filter length is 60 
days, the Ap filter length is 30 days, both deduced by 
experimentation. Filter coefficients are derived from 

the last 24 months of data (F10.7) or 6 months of data 
(Ap). In [2] we more fully describe the process of 
model selection, development and testing. Below we 
investigate the observed level of accuracy since 1992 
and report on an improved prediction algorithm for Ap. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A typical 27-day prediction of F10.7. 
 
We have also investigated those solar and geomagnetic 
data, beyond Ap and F10.7, which are now available at 
least on a next day basis and have attempted to 
determine whether these data are potentially useful for 
more accurate forecasts of variations in atmospheric 
density. Of particular interest are geomagnetic data that 
describe Joule heating effects from energised current 
systems at high and polar latitudes during magnetic 
storms and a new, supposedly more accurate, proxy 
index for solar ultraviolet emission (and hence 
ionisation of the upper atmosphere), the E10.7 index [3]. 
We have examined the time series of drag coefficients, 
Cd, for the ERS satellites and investigated whether the 
observed variability in Cd can be related to solar and 
geomagnetic data. In particular, we investigate whether 
we can build an effective ‘correction’ factor for the 
ERS-2 orbit. Such a correction term may be useful for 
ENVISAT as it follows a similar orbit. 
 

2. PDFLAP: AN OPERATIONAL SYSTEM FOR 
SOLAR AND GEOMAGNETIC ACTIVITY 
PREDICTION 

 
PDFLAP has been in use since 1992 and retrospective 
tests on past solar cycle data quantified its expected 



level of accuracy [2]. However we now have 
accumulated an independent (forecast) data set that 
covers a substantial fraction of the current and last 
solar cycles. We have also taken the opportunity to 
compare the results with some simpler benchmark 
‘forecasts’ to provide a context for evaluating the 
software. Our assessment was based on the following 
statistical tests: 
1. Forecast - Observed root-mean-square (RMS) 

error as a function of year and of forward lag. Lags 
of one day through 27 days are used, as these are 
the output lags (days) of the software. 

2. The percentage of all days where the forecast is 
within a given tolerance (±N units) of the observed 
value, again as a function of year and lag. We 
have examined tolerances of  ±5, ±10, ±20 units. 

3. The computed ‘skill score’ of PDFLAP against 
other benchmark techniques versus year and lag. 

 
The skill score SSBENCHMARK (see the list of verification 
definitions at the Space Environment Center (SEC) site 
http://www.sec.noaa.gov/forecast_verification/) against 
a benchmark technique is defined as 
 

SSBENCHMARK = 1 - MSEPDFLAP/MSEBENCHMARK        (1) 
 
where MSE is mean-square-error over all forecasts. A 
skill score of one implies a perfect PDFLAP forecast, 
regardless of benchmark. A SS of zero implies no 
difference between the two methods and less than zero 
implies that the other method has more ‘skill’. 
 
The benchmark techniques examined were 
1. Persistence: the forecast for each of 1-27 days 

ahead is equal to today's observed value. 
Persistence is known to be strong for geomagnetic 
indices at one and two days ahead. 

2. Recurrence: the forecast for each day up to 27 
days ahead is exactly equal to the value observed 
27 days before that date. This is based on the 
tendency towards recurrence in geomagnetic data 
and is related to the rotation rate of the Sun with 
respect to the Earth. 

3. Climatology: the forecast for 1-27 days ahead is 
equal to the mean of the observed values of the 27 
days up to today. This approach emphasises a 
current ‘smoothed’ level of activity appropriate to 
long-term variations that are seen to depend on the 
smoothed sunspot cycle [4]. Note that this 
definition of ‘climatology’ differs from other 
interpretations that tend to emphasise average 
behaviour over a much longer time span. 

4. For Ap, we considered a back-propagation neural 
network model for one to three days ahead [5]. 

  
The results comprised data on (and depending on year, 
solar phase, day-lag, etc) 

1. Absolute accuracy. 
2. Accuracy relative to that expected [2]. 
3. Relative accuracy with respect to the benchmarks. 
4. Skill scores. 
 
In Figs. 2 to 5 we show the major and most relevant 
findings of the analysis. Full details are in [6]. We note 
here that neither persistence nor recurrence showed any 
merit and are not discussed further. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Accuracy of Ap and F10.7 predictions within a 
tolerance of 10 units since 1992. This tolerance level is 
regarded as ‘desirable’ in mission planning. 
 
No forecast technique for F10.7 seems to be clearly 
preferable to PDFLAP. Indeed, although we have not 
demonstrated it here, even neural network models of 
F10.7 do not show significant improvement over 
PDFLAP (based on informal tests of F10.7 carried out 
during the Ap study reported in [5]). During the 
quietest solar conditions F10.7 climatology becomes a 
comparable approach. However it is not obviously 
superior and we do not judge it good enough to merit a 
modification of the PDFLAP algorithm. We 
investigated in [7] a regression model for F10.7 based on 
SEC reports of solar active regions and demonstrated 
that it provided a marginal improvement over PDFLAP 
(a few percent at a tolerance of ±10 units), from about 
six up to twelve days ahead. However we do not 
currently believe that this adaptation is yet warranted 
for day-to-day operations.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Accuracy of Ap and F10.7 predictions as a 
function of forward forecasting lag compared with 
expected accuracy based on last two solar cycles [2]. 
Colour coding denotes solar cycle phase. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Accuracy of Ap and F10.7 predictions as a 
function of forward forecasting lag compared with 27-
day climatology since 1992. Colour coding denotes 
solar cycle phase. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Accuracy of Ap predictions as a function of 
forward forecasting lag compared with a neural 
network prediction (since 1994) [5]. Colour coding 
denotes forward lag and method. 
 
Forecasts of Ap have also been more accurate than 
expected. However, unlike F10.7, there are other 
techniques that have been shown to be at least as useful 
as the current PDFLAP algorithm, in some solar cycle 
phases or within some particular tolerances. These are 
climatology and neural network (i.e. non-linear) 
models. It should be noted that neural network 
forecasts of magnetic storms, though better than 
PDFLAP, may not be as accurate as human forecasts, 
for example, those which are part of the daily SEC 
reports.  
 

3. IMPROVED FORECASTS OF Ap  
 
Through close examination of results such as in Figs. 2 
to 5 we have found that there is room for improvement 
in geomagnetic activity prediction, principally by 
taking advantage of non-linear methods such as are 
provided by neural networks. Physically this may at 
least partly reflect the non-linearity of processes 
operating in the magnetosphere. At the same time 
simple index climatology (as defined above) has also 
been found to be useful for some forecast lags.  
 
The accuracy of an improved, ‘hybrid’, Ap prediction 
scheme is presented in Fig. 6. In this algorithm, days 1-
3 are forecast by the back-propagation neural net, days 
4-6 by climatology, days 7-15 by the existing PDFLAP 
algorithm and days 16-27 according to the minimum of  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Prediction accuracy for the new geomagnetic 
prediction technique compared with the existing 
PDFLAP and climatology. 
 
climatology and PDFLAP predictions (deduced again 
by experimentation). Clearly there is little physical 
justification for the algorithm: it simply performs best 
on a data set covering the last 8 years and also suggests 
that regular future checks of accuracy will be needed. 
In terms of skill scores the improved Ap algorithm 
performs best at the shorter time lags, as shown in Fig. 
7. The benchmarks shown in Fig. 7 are the existing 
PDFLAP algorithm (upper plot) and simple 
climatology (lower plot).  Although there is clearly a 
dependence on the phase of the solar cycle, on average 
the new algorithm can be seen to have added value to 
the existing model. 
 

4. THERMOSPHERIC DRAG AND SOLAR 
AND GEOMAGNETIC ACTIVITY INDICES 

 
Models such as MSIS that use global daily activity 
parameters such as Ap may not capture brief localised 
heating effects at high latitudes during storms and sub-
storms. Similarly, the true EUV ionisation of the 
atmosphere may not be well represented by the 
parameter F10.7 (known to be more variable than solar 
EUV [3]). These effects may be better parameterised 
by solar and geomagnetic indices that are better 
matched physically to individual processes. In 
particular the recently introduced E10.7 solar EUV index 
may prove useful [3].  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Skill scores for the new geomagnetic prediction 
technique compared with the existing PDFLAP and 
climatology. 
 
Deficiencies in density models using these data may be 
revealed in a variation about a constant value of the 
drag coefficient, Cd, for LEO satellites. The drag 
coefficient Cd and modelled atmospheric density, 
?MODEL, are related in terms of drag force FD, satellite 
mass, m, acceleration, aD, cross-sectional area, A, and 
velocity, V, as 
 

FD  =  m·aD  =  - ½·Cd·A·?MODEL·V2            (2) 
 
In effect Cd represents a scaling factor that represents 
our ignorance of the true atmospheric density at the 
satellite location: Cd varies with time and position 
according to the error in the modelled density.  
 
There are two procedures employed by ESOC for 
computing the orbits of ERS-1 and ERS-2: the 
operational orbit determination and the precise orbit 
determination. The drag coefficients used in this study 
for both ERS-1 and ERS-2 are derived from the precise 
orbit determination. The precise orbit makes use of 
tracking data from Kiruna and other stations in the 
computation of orbital parameters. The precise orbit is 
computed using five-day arcs, overlapping by two 
days. Values are computed for 00:00UT and 12:00UT 
for each day in the five-day arc. Daily averages are 
used here. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Stackplot of daily-averaged ERS-1 and ERS-2 
drag coefficients compared with various daily solar 
activity and Earth hemispheric power input data for 
1999.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Stackplot of daily-averaged ERS-1 and ERS-2 
drag coefficients compared with various daily 
geomagnetic activity data for 1999.  

 
In Figs. 8 and 9 we show daily ERS-1 and ERS-2 Cd 
data, in comparison with (daily average) solar and 
geomagnetic data for 1999. Other years have also been 
examined (1996-2000) but are not reproduced here.  
 
A strong correlation amongst the geomagnetic data is 
evident (e.g. ‘peaks’ in Ap mirrored by ‘peaks’ in other 
data). This indicates that the daily geomagnetic data 
are not independent. With data on a sub-daily time 
resolution this may not have been true. However, it is 
seen that at least some of the smaller fluctuations in Cd 
are related to the larger solar and geomagnetic 
variations. This is the case for both ERS-1 and ERS-2, 
for which the variations in Cd are very similar, 
indicating that both satellites are subject to similar 
atmospheric perturbation forces. It is also notable in 
Fig. 8 that the difference between daily E10.7 and F10.7 
grows in amplitude from solar minimum through solar 
maximum, sometimes displaying a roughly 27-day 
periodicity. We note that only those Cd between about 
+0.5 and +3.0 are likely to be related to solar and 
geomagnetic influences. Other values, particularly 
negative values, are likely to be related to manoeuvres 
(from conversation with ESOC), other controller 
initiated changes, or instrumental effects, drifts, offsets 
or re-calibrations. For the purposes of further study we 
therefore ‘prune’ these outliers from the data set. 
 
A linear regression study following on from Figs. 8 and 
9 suggests that Ap, PCN (northern polar cap index), 
HPN (northern hemispheric power index), Dst (low-
latitude ring current index) and CKP (Canopus 
magnetometer array auroral index) are likely to be 
useful explanatory geomagnetic variables. Longitude-
sector Ai data in the same sector as the ERS-2 satellite 
are at best of marginal relevance. We also find that 
differences in the solar data, i.e. E10.7 - F10.7 and their 
smoothed values, show most clearly in longer period 
variations in Cd. Note we have only PC(North) 
available for this study, and therefore concentrate on 
HPN rather than HPS. Slight differences observed 
between, for example, HPN and HPS are worthy of 
further study. Particle precipitation data are found to be 
most useful when used in combination with other 
variables and, in general, systematic experimentation 
using these and other data has been necessary to find 
potential ‘best’ regression combinations. In this way 
we have also found that lagging some variables by one 
day improves the correlation (reason unclear). 
However it is interesting to note that the most useful 
geomagnetic indices reflect geomagnetic activity in 
particular latitude zones, especially at high and low 
latitudes, where activity is not characterized by Ap. 
Also, particle precipitation into the magnetosphere at 
very high latitudes may be a relevant indicator of 
heating. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10. The variance in Cd for ERS-2 (black) is 
reduced by the optimum regression on solar and 
geomagnetic data. The correction factor is 
multiplicative. Mean Cd is subtracted. 
 
Table 1 A comparison of original and corrected mean 
and standard deviation (SD) in Cd. 

 
In Fig. 10 we compare the ERS-2 Cd (black line) with 
the improved Cd (coloured line), where the best 
regression relationship is multiplicatively taken into 
account. (Note: a perfect correlation would reduce the 
Cd variability to zero.) Although there are a number of 
regression relationships that all reduce the variance in 
Cd, in Fig. 10 we use the correlation that proves 
optimum for this data set. This regresses Cd on Ap, 
PC(North), proton fluence and E10.7 - F10.7. Finally, in 
Table 1 we quantify the observed reduction in Cd 
variance. These figures seem to mirror similar results 
reported by the US Air Force [8], using a ‘calibration 
satellite’ approach.  

5. CONCLUSIONS 
 

An analysis of the accuracy of the PDFLAP forecast 
code has been made, covering the period January 1992 
to December 2000, or nearly a full solar cycle. The 
observed accuracy of the forecast models of the F10.7 
solar radio flux and the Ap geomagnetic activity index 
is shown to have been better than anticipated [2]. Even 
so, an improved prediction model for Ap has been 
derived and evaluated. No improvement has been 
found or is suggested from the present work for F10.7. 
We have examined the time series of drag coefficients 
for ERS-1 and ERS-2 and produced regression 
relationships with solar and geomagnetic indices. The 
best model reduces the standard deviation about each 
mean coefficient from about 23% and 20% of the 
mean, respectively for ERS-1 and ERS-2, to about 18% 
and 15%, or approximately by about one fifth. These 
regression models may prove useful for improved 
control for ENVISAT given the similarity of its orbit to 
that of ERS-2. We have also noted the importance of 
the difference between the E10.7 index and F10.7 index in 
those 27-day and longer period variations seen in Cd 
and the need for further study of these terms. Finally 
we note that further progress on drag modelling may 
well require sub-daily data, rather than daily averages.  
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Original Data 

 
After  

Correction by 
ERS-2 Cd 

Model 

 
Reduction  
in % Ratio 

of 
SD/Mean 

 
ERS-

1 

 
1.370±0.313 
(SD=22.8% 

of Mean) 

 
1.397±0.252 
(SD=18.0% 
of Mean ) 

 
4.8% 

 
ERS-

2 

 
1.365±0.272 
(SD=19.9%) 

 
1.365±0.210 
(SD=15.4%) 

 
4.5% 


