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REFERENCES 

The geomagnetic field measured at any point on Earth as a function of time shows periodic variations 
due to atmospheric processes. A method of time series analysis based on discrete Fourier transforms is 
developed for the detection and estimation of lines in the frequency spectrum; the method gives esti­
mates, with error limits, of the amplitudes of sinusoidal variations in the data, and these estimates are 
unbiased by noise. The method is used to determine the lunar and solar variations present in Abinger 
declination records, data for a period of 17 years (1927-56) being used. The coherence between Abinger 
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234 D. I. BLACK 

data and time series that model the lunar and solar input functions to the atmosphere aids the identifica­
tion of lines in the Abinger spectrum. The amplitude spectrum of magnetic declination at Abinger shows 
prominent solar peaks at 1, 2, 3, 4 cycles per day (c/d), and lunar peaks at 0.0703, 1.932, and 2.932 c/d. 
Sidebands of the solar diurnal peak at 1 ± 0.037 cld are attributed to a solar rotation mechanism, and 
this is supported by a high resolution power spectrum that shows the width of these sidebands. The high 
resolution analysis also shows annual and semi-annual splitting of the solar diurnal and semi-diurnal lines, 
and of the lunar semi-diurnal line. 

1. INTRODUCTION 

Many workers have extracted from magnetic records the amplitude and phase of periodic 
variations ascribed to solar and lunar influences on the atmosphere. Most previous workers (for 
example, Chapman 1913, 1957; Bartels & Johnston 1940; Cain 1957; Wilkes 1962; Schneider 
1963; Leaton, Malin & Finch 1963) have used a method of analysis similar to that described by 
Chapman & Miller (1940) and Tschu (1949) and termed here the C.-M. method. The majority 
of workers have restricted their investigations of lunar variations to those arising from the semi­
diurnal component of lunar gravity, but a few have attempted the identification of other lunar 
variations (see, for example, Schneider 1963; Leaton et ale 1963). 

The first step of the C.-M. method is to sum data recorded at the same phase of the moon to 
obtain an average daily record for each part of a lunation. Two sets of Fourier transforms are 
then calculated; the first obtains the harmonics of each daily record, and the second analyses the 
variation over the lunation of each daily harmonic. Combinations of the Fourier coefficients 
of the second analysis give the different lunar variations. 

The C.-M. method has many advantages. Principal among these are the method's ability to 
analyse broken data sequences (and hence one may select the days to be analysed by season, 
sunspot number, magnetic character figure, etc.), and the method's association ofa probable 
error with the estimates of amplitude and phase of a magnetic variation. The disadvantages of 
the C.-M. method become apparent when it is compared with the techniques of power spectrum 
analysis (see Blackman & Tukey (1958) for an early exposition). The C.-M. method fails to give 
any bandwidth for its estimates: all methods of time series' analysis can only give estimates of 
amplitude and phase that are an average over a band of frequencies. For the estimates to be 
meaningful, the bandwidth must be known, and it must be sufficiently small for there to be no 
overlap between 'lines' in the spectrum. However, the C.-M. method can only determine the 
parameters of magnetic variations of pre-specified frequencies, and it does not examine the 
spectrum; there is thus no check that the spectral line under investigation (i.e. the magnetic 
variation being sought, in the present application) is not contaminated by other nearby lines. 
The C.-M. method has the further weakness of being unable to search for so far undetected 
variations unless their frequency is predicted by theory. 

Gupta (1966) and Gupta & Chapman (1969) have used power spectrum analysis to identify 
lunar variations. They follow the techniques described by Blackman & Tukey (1958), and obtain 
their power spectra from the autocorrelation function of the data. The bandwidth of their power 
estimates is known, and (subject to this resolution limit) the method shows all peaks in the chosen 
frequency range of the spectrum, without prior knowledge. 

Lines in the spectrum correspond to the magnetic variations of interest here (i.e. periodic 
variations), and will be referred to as signals; the continuum power corresponds to random 
magnetic fluctuations and, since it is of no interest here, will be regarded as noise. The investiga­
tion of periodic magnetic variations thus concerns the detection and estimation of lines in the 
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spectrum in the presence of noise, and for such an investigation power spectrum analysis based 
on the autocorrelation function of the data suffers from several disadvantages. Among these are 
the lack of a good estimate of probable error to associate with the power estimates (see discussion 
in § 3), the (positive) biasing of the estimates by noise, the possible need to prewhiten the data, 
the lack of flexibility of the method (separate analyses are performed for each different resolution 
spectrum, and for all cross-spectra), and the long computing time required. 

To overcome the disadvantages of the C.-M. method and of autocorrelation power spectrum 
analysis, a method of spectral analysis using discrete Fourier transforms is developed here. The 
use of Fourier transforms was once prohibited by the excessive computing time required, but 
fast algorithms-apparently first derived (see Cooley, Lewis & Welch 1967) by Runge (1903), 
but not widely known until rediscovered by Cooley & Tukey (1965)-have removed this objec­
tion. The literature on autocorrelation power spectrum analysis is extensive (see, for example, 
Jenkins 1965; Jenkins & Watts 1963), but little of it is relevant to the approach via Fourier 
transforms; even the published work that uses Fourier transforms as a tool (reviewed by Hinich 
& Clay 1968) does not modify the method to overcome the principal disadvantages of auto .. 
correlation power spectrum analysis. 

2. DATA USED 

The data analysed in this paper consisted of alternate hourly mean values of magnetic West 
declination (D), measured-at Abinger, England (51° II'N, 0° 23'W), in the period 1926-57 
(Greenwich Magnetic and Meteorological Observations 1926-57). The values were given to 
0.1', and the first value of each day corresponded to 00.30 U.T. At the dip latitude of Abinger 
(49° N) periodic variations in the frequency range 0 to 6 cld are most conspicuous in the declina­
tion, so that this magnetic element was chosen for the analyses. 

Much theoretical work on time series analysis (see, for example, Blackman & Tukey 1958; 
Goodman 1957) assumes that the data are both stationary and Gaussian. A time series is stationary 
if its autocorrelation is a function only of the lag and not of the time origin of the data. Auto­
correlations of the Abinger data for various lags showed no systematic change with epoch, and 
the data are assumed to be stationary. 

To define the Gaussian assumption, assume that the time series is generated by a random 
process, and regard any particular value as being one of an (unobservable) ensemble of values 
that might have been generated. The time series is Gaussian if the ensemble has a Gaussian 
distribution; the ensemble cannot be tested, but (under conditions here satisfied) averages across 
the ensemble are equivalent to time averages along the ensemble. The data contain signals that 
are not expected to be Gaussian, and it was also found that 5 % of the data points had excep­
tionally large scatter (presumably these correspond to magnetic storms); the seven largest 
frequency components and the 5 % of points with large scatter were removed from four thousand 
points of Abinger data, and a X2 test on this modified data showed that there was no re;;:tson to 
reject the hypothesis that the noise part of the data was Gaussian. 

3. AUTOCORRELATION POWER SPECTRUM ANALYSIS 

The results presented in this section show the main features of the magnetic declination 
spectrum in the frequency range 0 to 4.5 c/d. The method follows Blackman & Tukey (1958) and 
the computations were performed with the BOMM (1966) program package. Two lengths of 
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SOO days (9600 points) data were processed, one length at sunspot maximum (6 January 1947 to 
15 March 1949) and one at sunspot minimum (4January 1953 to 14 March 1955). The data 
were checked for errors, and were corrected by interpolation when first or second differences 
exceeded 12.0' or IS.0' respectively. This error check altered 0.5 % of the points at sunspot 
maximum and 0.36 % at sunspot minimum; a more severe first difference limit would have 
removed power from the solar daily variation peak. 

The sampling interval of the data, I1t, was 1/12day which gives a Nyquist frequency,fN, of 
1/(2I1t) = 6c/d. The resolution, 111, was chosen to be 1/300c/d, which required that the auto­
correlation function be calculated at IS00 lags. In general, a pure sinusoidal signal in the data 
will appear in the spectrum as a band of width tV 211f together with sidelobes that decrease in 
height as 1/01, where of is the distance in frequency from the main peak. To reduce this leakage 
power in the sidelobes, the autocorrelation function was multiplied by a cosine bell lag window 
l(l+cos (lTl/1S00)), where l is the lag number, before taking the cosine transform of the auto­
correlation to obtain the power spectrum. Multiplication by this lag window before transforma­
tion is equivalent to smoothing (with weights 1, 1, 1) the spectrum obtained by transforming the 
original autocorrelation function. This smoothing, somewhat paradoxically, broadens the main 
peak (to a width tV 411f) but reduces substantially the leakage power appearing at more than 
211ffrom the centre of the peak. This lag window gives each estimate a bandwidth of tV 4111, so 
that at frequency f the power estimate P(f) is influenced by power in the data in the range 
f± 2111 

The data were not prewhitened. Prewhitening is a filtering operation (convolution in time) to 
flatten the spectrum and so avoid the swamping of a small feature by leakage of power from a 
nearby large peak. The most common application of pre whitening is in removing low-frequency 
power from the data; as another example, Leaton et at. (1963) state that they need to remove 
solar variations from the data in order to evaluate the smaller lunar variations. Prewhitening 
is only of use because the width of the filter can be less than the bandwidth of an estimate: 
analysing a record of N points at m lags broadens the natural bandwidth bya factor N/m, and so 
the removal of a large peak before this blurring takes place will preserve nearby small peaks that 
would otherwise be swamped. For the present analysis, power leakage was controlled by the use 
of a lag window and by using sufficient resolution to separate the peaks of interest by several 
bandwidths. 

The data consisted of hourly means, not instantaneous values. The use of means ensures that 
there is no aliasing (the appearance of power in the computed spectrum at frequencies below fN 
that is in reality at frequencies abovefN), but the spectrum must be corrected by multiplication 
by a slowly varying function offrequency to obtain the true power. This function is (Chapman & 
Bartels 1940): F(f) = (fTr/24 sin (frr/24))2, (3.1) 

where f(c/d) is the frequency. For f = 0, 1, 2, 3, 4c/d, F(f) = 1.0, 1.006, 1.024, 1.053, 1.096 
respectively. 

The spectra for sunspot minimum and sunspot maximum are similar, but the noise level at 
sunspot maximum is higher and the peaks are somewhat less prominent. Figure 1 shows sections 
of the spectrum around 0, 1, 2, 3, 4c/d for sunspot minimum, and also a section around 1 cld 
for sunspot maximum for comparison. Since the ultimate aim of this investigation is to determine 
the amplitudes of magnetic variations, the normalization of the power spectrum is such that 
a peak of total power M2 (i.e. the sum of the power estimates comprising the peak is M2) 
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FIGURE 1. Power spectrum of Abinger declination data (spectrum obtained from the autocorrelation function). 
Panels a, h (i), c, d and e are for data at sunspot minimum, panel h (ii) is for data at sunspot maximum. 
Do! = 1/300 c/d; number of data points used = 9600; number oflags = 1800. 
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corresponds to a magnetic variation M cos (2njt), and not (as is more usual) to a variation 
~2 M cos (2nft). 

The spectrum shows background noise at all frequencies: the continuum power between the 
regions shown is roughly constant and equal to the noise power seen in figure 1. Peaks in the 
spectrum stand above this noise by up to 2.5 orders of magnitude. Using the spectrum alone, one 
can only deduce the origin of the peaks from their frequency. The largest peaks at I, 2, 3, 4 c/d 
are certainly the solar diurnal variation and its harmonics; the peak at 1.932( = 2- 229 ) c/d is the 
lunar semi-diurnal variation. The peaks near to 1 c/d, at 0.96, 1.04, 1.07, 1.11, and 1.14 c/d, 
are unexpected, and it will be seen later that no lunar variations are predicted at these 
frequencies. 

The autocorrelation power spectrum leaves two problems. The first is the presence of the 
continuum noise, which both biases the power estimates and makes it difficult to detect peaks. 
It is shown in appendix C (a) that the expectation of the total power ofa peak is the sum of the 
signal and the noise power. The noise power, however, fluctuates from one frequency to another, 
for a given data sample, so that, although in principle one may subtract the continuum power 
from the total power to obtain the signal power (with the assumption that the noise at the peaks 
is equal to the adjacent continuum level), in practice this is not possible. The difficulty may be 
illustrated with the peak at 2.933 c/d. Is this a real peak, or merely a noise fluctuation? If it is 
a real peak, what is the appropriate noise power to subtract from it? 

The second problem is the lack of confidence limits for the power estimates. Blackman & 
Tukey (1958) give theoretical confidence limits, in terms of degrees of freedom (given by twice 
the number of data points divided by the number of lags), under the assumptions that the data 
are Gaussian and that the spectrum is smooth over the spectral window (i.e. the bandwidth) of 
the estimates. For the spectrum in figure I, the number of degrees of freedom is ca. II, which 
gives 80 % confidence limits of 0.5 and 1.6 times the estimate. However, both assumptions cease 
to be valid at lines in the spectrum, at which points it is claimed (Blackman & Tukey 1958) that 
the 80 % confidence limits expand to 0.1 and 2.3 times the estimate. From experience, the 
estimates are considerably more reliable than this, but no quantitative confidence limits are 
available. 

Fourier transforms of many blocks of data will be used in § 6 (by the method to be developed 
in § 4 (b)) to overcome these two problems. Information on the origin of the spectral peaks and 
the phase of the magnetic variations will also be obtained in § 6, by calculating the coherence 
and phase between the magnetic data and a theoretical model. 

4. FOURIER TRANSFORM ANALYSIS 

(a) Discrete Fourier transforms 

Let the data series, X(t), be given for a time interval 0 ~ t ~ Tat N equally spaced points 
!l.t apart, so that (N -I)!l.t = T. For convenience, Nis taken to be even. X(t) may be represented 
exactly at the points m!l.t in the interval (0, T) by a finite series of orthogonal trigonometric terms: 

iN !N-l 
X(t) = ~ Akcos (2nkt/T) + ~ Bksin (2nkt/T). ( 4.1) 

k=O k=l 

There are other complete sets of orthogonal functions on the straight line; sines and cosines 
are the natural choice here because the phenomena of interest approximate well sinusoidal 
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variations. Estimates of the power, P(f), and phase, O(f), are obtained at discrete frequencies 

J = klTfor k = 0,1, ... , iN (i.e. I).f = I/T,fN = N/2T) where 

P(k/T) = Pk = A~+ B~ [k = (0, iN)], 

Ok = - tan-1 (Bk/Ak) [k = (0, iN)]. 

(4.2 a) 

( 4.2 b) 

The notation k = (a, b) is introduced to indicate that an integer variable, k, can take all integer 
values from a to b inclusive. 

It is of interest to compare these power estimates with those obtained from the autocorrelation 
function; the relation is derived in appendix A. 

-
--

4 

- -

-

o 
I ~ 

frequency (spacing = b..f = 1/ T) 

FIGURE 2. Power spectra of a pure sinusoidal signal. Spectra obtained from Fourier transform, with use of cosine 
bell data window (dashed columns) and without use of data window (plain columns). 

To reduce power leakage, the data series is multiplied by a cosine bell data window, 
Hl- cos (ntl T)}. This is equivalent to convolving each of the two coefficient series Ak, Bk with 
weights -1, i, - i before calculating Pk • The reduction in leakage achieved by this window is 
shown in figure 2. This data window reduces the power estimates by a factor i, so the spectrum 
must be corrected for this. 

(b) Estimates of amplitude unbiased by noise 

If there is noise in the data, each Fourier power estimate ~c will have low stability, i.e. estimates 
at the same frequency from different epochs of data will have a large scatter. The stability may 
be improved by smoothing the estimates. The data may be postwhitened before smoothing: the 
power spectrum obtained from the Fourier transform shows peaks with their natural bandwidth 
(for a length T of data and for a sinusoidal signal, this natural width is ca. 2fT), and to avoid 
power spreading sideways from peaks during the smoothing process, the peaks may be set equal 
to the adjacent power level before smoothing, and replaced subsequently. This post-whitening 
is much quicker, more accurate and easier (since the spectrum is known) than the pre whitening 
required, before calculation of the power spectrum from the autocorrelation function, to achieve 
the same ends. 

Smoothing the power estimates implies a loss of resolution, and the estimates are no longer 
independent, but the smoothed spectrum is essentially the same as that obtained by the auto­
correlation method at the equivalent resolution. 

Stability may alternatively be improved by splitting the data into several, say p, sections, 
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calculating Fourier power estimates for each, and combining the p estimates at each frequency 
to give a 'best' estimate. This procedure may be used with blocks of data that are not con­
secutive, and one can combine the p estimates in such a way that the best estimate is not biased 
by noise (i.e. the presence of noise at the same frequency as the signal no longer increases the 
expected value of the estimate), while confidence limits for the best estimate may be obtained. 
In this procedure, developed below, it happens to be more convenient to work with the ampli­
tudes of the Fourier transform rather than the power, i.e. to use ,.jPk rather thanPk , and the method 
then gives an amplitude spectrum and not a power spectrum; the difference is trivial, except that 
peaks in the spectrum are less conspicuous in amplitude than in power. 

At a specific frequency kIT, let the Fourier transforms of the p blocks of data be 

( 4.3) 

where the dependence of all variables on k is understood. 
Let the Fourier transforms of the signal be Sj = Sexp (i¢j) , where the amplitude S of the signal 

is assumed constant for all j, and let the Fourier transforms of the noise by Nj = 11; exp (i1/fj). 
Then we have [j = (l,p)]. ( 4.4) 

For the first block of data, the Fourier transform of the signal is S exp (i¢I). It is natural to 
expect that, if fl.Tq is the time interval between the initial points of the first and qth blocks of 
data, then ¢q will be given by (4.5) 

It thus appears that ¢q - ¢1 is a known quantity, and we have 

Rqexp (i[Oq-¢q+¢l]) = Sexp (i¢l) +Nqexp (i[1/fq-¢q+¢I])' (4.6) 

so that by rotating the qth Fourier transform of the data by - (¢q - ¢1) the signal for each block 
of data will be in phase, while the noise phases will be random. However, this procedure cannot 
be followed; it is shown in appendix B (b) that in the absence of noise the phase of an estimate 
changes by 2n(k+ok) fl.Tql T between the first and qth blocks of data, where klTis the frequency 
of the estimate and (k+ok)IT is the (unknown) frequency of the signal. The discrete Fourier 
transform cannot define the frequency of a signal to better than ok ~!; the required phase 
change to bring the signal from each block of data into phase cannot therefore be made. 

As there is apparently no way to add the signal in phase, the phase information must be 
discarded, and S must be obtained from the p amplitudes R j • 

It is plausible to assume that the vectors Nj have a Rayleigh distribution, i.e. in polar 
coordinates the probability of a vector lying in an area- rdO dr is (h2/n) exp ( - h2r2) rdO dr. It is 
shown in appendix C(a) that under this assumption the amplitudes Rj have the probability 
density function (4.7) 

where 10 is the zero-order modified Bessel function. 
The shape of this distribution is shown in figure 5, for various values of the parameters. From 

the sample of p points R j from this distribution one may obtain estimates~, h for the parameters 
Sand h. 'Best' estimates (in many senses) may be found by the method of maximum likelihood 
(Kendall & Stuart 1967) which gives implicit equations for ~, h: 

~ (Rn = P(~2+ I Ih2) , (4.8) 
j 

~Rj11(2h2Rj~)110(2h2Rj~) = p~. 
j 

(4.9) 



SPECTRAL ANALYSIS OF ABINGER DATA 241 

These equations give unbiased estimates of Sand h (appendix C (b)). Maximum likelihood 
estimates of two parameters tend, for large p, to be distributed in bivariate normal form, and the 
standard deviation us, U h of the estimates of Sand h, as well as their covariance USh, may be 
found from the Rj • It may be shown that no other estimates that are unbiased and normally 
distributed for large p can have smaller variance than the maximum likelihood estimates. 

The method used to obtain the estimates of Sand h given by equations (4.8) and (4.9), and the 
equations for us, Uh and USh' are given in appendix C (c), (d). 

(c) Calculation of coherence and phase 

The Fourier transforms of two time series that have the same start time, sampling interval, 
and end time enable the coherence and phase between the two series to be obtained with little 
further computation. No cross-spectral analysis is required, since the two Fourier transforms 
define the cross-spectrum as well as the individual power spectra. 

To obtain meaningful estimates of coherence and phase, the two series must be split into 
many, say p, equal sections. Let the Fourier estimates at a particular frequency kiT be 
Xi' Yj,j = (I,p). The coherence 1'2 at this frequency is then 

1'2 = I~Xj Y;12/(~XjX;) (~YjYj) 
j j j 

(4.10) 

and 

If no averaging over many sections is performed, i.e. if the Fourier transforms of the two 
entire series are used, then 1'2 == 1. The power spectrum obtained from the Fourier transform of 
one length of data is almost meaningless because of the large scatter of points; coherence estimates 
using only one length of data from each series are meaningless because there is no scatter. 

The phase between the two series, ex y, is 

eXY = tan-l {1m (~Xj Yj)IRe (~Xj Yi)}, 
j j 

( 4.11) 

ex y is the phase lead of series X with respect to series Y. 
It may be shown that the estimate of phase eXY is unbiased, but the coherence 1'2 is (positively) 

biased by noise (Munk & Cartwright 1966, appendix B). Munk & Cartwright show that the 
quantity (p1'2 - I) I (p - I) is an approximately unbiased estimate of the true coherence. Munk & 

Cartwright (1966) give confidence limits for eXY as a function ofa noise parameter 

U = ((1'-2 - 1) 12p ) t. 

Foster & Guinzy (1967) show the probability distribution of the true coherence for various 
values of the sample coherence l' andp. This paper follows Foster & Guinzy (1967) in using l' as 
the measure of coherence rather than 1'2. 

5. MODEL OF LUNAR AND SOLAR MAGNETIC VARIATIONS 

Matsushita (1967) has reviewed the literature on the solar quiet and lunar daily variation 
fields. The predominant magnetic variations in the frequency range 0 to 4 c/d have periods 
related to the lunar and solar periods. These variations are caused by atmospheric tides. The 
tidal motion of the conducting layers of the ionosphere relative to the main geomagnetic field 
creates ionospheric currents which are observed at the Earth's surface as magnetic variations. 

20 Vol. 268. A. 
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Matsushita (1967) concludes that, contrary to earlier opinion, the current systems responsible 
for the lunar (L) variations and the solar quiet day (Sq) variations flow in the same layer, the 

E layer (height ca. 80 to 170km), of the ionosphere. 
The Moon can raise only a gravitational tide in the atmosphere: the magnitude at Greenwich 

(51 ° 29' N, 0° 00' W) of the lunar semi-diurnal tide is 1.2 p.bar (Haurwitz & Chapman 1967). 
This tide is 2.5 times greater than the pressure fluctuation of an atmosphere in equilibrium with 
the lunar gravitational field. The ratio of the Moon's tidal force on the Earth to that of the Sun is 
approximately 2.4, but while this is the observed ratio of lunar and solar ocean tides, the solar 
semi-diurnal atmospheric tide is far greater than the lunar tide. The solar tide is magnified 
90 times relative to the equilibrium tide: this was long thought to be a resonance effect, but it 
has now been shown that the solar tide is thermally excited by atmospheric absorption of solar 
radiation (Siebert 1961; Butler & Small 1963). 

The ionosphere is rendered conducting by solar radiation. The conductivity is anisotropic, 
and different components are dominant at different heights, but for a first approximation it may 
be assumed that the conductivity is proportional to the incident radiation. 

No further inquiry into the ionospheric process producing the magnetic variations is needed 
here, and the variations may simply be regarded as the output from a complex physical system. 
Magnetic variations are the result of a multiplicative interaction between tidal motions and 
ionospheric conductivity; thus a simple model for the input to the system for lunar variations is 
the product of lunar gravitational potential and solar radiation, while for a model of the input 
function that gives rise to solar variations the square of solar radiation suffices and the contribu­
tion of solar gravity may be neglected. It is expected that lunar and solar variations will be 
present in the spectrum of magnetic records at only those frequencies at which there are peaks 
in the spectra of input functions. 

At a given point on Earth, the magnetic variations depend on the spatial configurations of the 
tides and conductivity variations in the vicinity of that point. To predict magnetic variations, the 
tides and conductivity variations must be analysed into spherical harmonies, and each inter­
acting pair of spherical harmonies must be multiplied by a different factor to give its contribu­
tion to the total magnetic variation. No such spatial analysis is attempted here. The lunar and 
solar time series used to form the model input functions are the total lunar equilibrium tide and 
the total incident solar radiation at Abinger. This implies that no significance can be attached 
to the exact ratio between corresponding peaks in the spectra of the magnetic data and the 
input functions. 

The observed data are better compared with the models by calculating the coherence and 
phase between the series. A high value of coherence is an indication (but in no sense a proof) that 
at that frequency the modelled process is the cause of the magnetic variation. The coherence is 
normalized so that it is independent of the relative magnitude of the power in the two series. The 
estimate of phase between the series is the true phase between the magnetic variation and the 
input function. 

6. RESULTS OF ABINGER ANALYSIS 

The amplitude spectrum of Abinger declination was obtained from the Fourier transforms of 
seventeen epochs of data, each oflength 4096 points (3411 days). The epochs are listed in table 1, 

together with an average sunspot number for each epoch. The seventeen epochs sample all parts 
of the sunspot cycle, so that the assumption that the signal is constant from epoch to epoch is 
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violated; however, the signal fluctuation with the sunspot cycle may be regarded as noise, and 
the signal amplitude obtained will be an average over the sunspot cycle. 

Errors in the data were corrected by interpolation, as discussed in § 3, and each epoch of data 
was multiplied by a cosine bell data window and Fourier transformed. The frequency interval 
is D..f = 1/341-1 = 0.00293 c/d, and at each frequency k8fthe seventeen Fourier amplitudes were 
used to estimate the amplitude S of the magnetic variations, and the standard deviation Us of S, 
by the method described above in § 4 (b). 

TABLE 1. EpOCHS OF DATA USED TO OBTAIN THE AMPLITUDE SPECTRUM OF 

ABINGER DECLINATION 

epoch 

I Jan. 1927-8 Dec. 1927 
8 May 1928-14 Apr. 1929 

15 Apr. 1929-22 Mar. 1930 
17 Aug. 1930-25 July 1931 
26 Jan. 1932-1 Jan. 1933 
4 Jan. 1933-11 Dec. 1933 

15 Feb. 1935-22 Jan. 1936 
23 Jan. 1936-29 Dec. 1936 
2 Jan. 1945-9 Dec. 1945 

sunspot 
number 

69 
74 
55 
26 
11 
5 

36 
79 
33 

epoch 

28 July 1946-4 July 1947 
5 Aug. 1947-10 July 1948 
1 Jan. 1951-8 Dec. 1951 
9 Dec. 1951-14 Nov. 1952 

15 Nov. 1952-22 Oct. 1953 
23 Oct. 1953-29 Sept. 1954 
30 Sept. 1954-6 Sept. 1955 

7 Sept. 1955-13 Aug. 1956 

sunspot 
number 

122 
144 
69 
32 
14 
4 

27 
107 

The estimates of S are normally distributed if the number of sample points p used to obtain S 
at each frequency is large. This analysis used seventeen epochs of data giving seventeen values 
of R j at each frequency; seventeen is not a large sample, but it is sufficient for the estimates of Us 

to give a good indication of the reliability of the values of S. 
The top panels offigure 3 (a), (b), (c), (d) and (e) show the amplitude spectrum and standard 

deviation of the amplitude estimates for frequency ranges around 0, 1, 2, 3, 4 c/d. There is no 
signal shown at those frequencies at which either the maximum likelihood equations (4.8) and 
(4.9) had only the solution S = 0, or at which the signal was not significant at the 95 % level 
(i.e. S ~ 1.960-s ). 

A particular magnetic variation, say the solar diurnal variation, will give a significant signal 
at several adjacent frequencies. The amplitude of the magnetic variation is (2:S~)i where the sum 
is over the estimates comprising the peak. Thus the solar diurnal variation has an amplitude of 
(0.282+ 0.782 + 2.362 + 1. 772 + O.4I2)i = 3.09'. The standard deviation of each estimate is known, 
and the probable error, 8S, of the magnetic variation may be taken as (Topping 1955) 

8S = (2:S~ ~~k}i . ( 6.1 ) 
2:S~ 

Thus the probable error of the solar diurnal variation is 0.1'. The conversion between units of 
minutes of arc and gammas for declination at Abinger is 5.4y/min (Leaton et ale 1963), which 
gives an alternative expression for the solar diurnal variation of 16.7 ± 0.5y. (ly = 10-5 G = 

10-9T = InT.) 
I am indebted to Dr W. H. Munk for supplying me with time series of lunar gravitational 

potential, solar gravitational potential and incident solar radiation at Abinger for the last six 
epochs of table 1 (IJan. 1951 to 13 Aug. 1956). The lower six panels of figure 3 show the spectrum 
of the lunar input function (lunar gravity times solar radiation), the coherence and phase 
between the lunar input and Abinger data, the spectrum of the solar input function (solar radia­
tion squared), and the coherence and phase between the solar input and Abinger data. The 
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FIGURE 3 (a) to (e) (see pp. 244 to 248). The top panel is the amplitude spectrum of Abinger declination 
data; the bar across each column is the height of the standard deviation of the estimate of amplitude. Ampli­
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spectrum of the product of solar gravitational potential and solar radiation (i.e. a model for 
gravitationally excited solar variations) was also calculated, but no frequencies other than those 
in the spectrum of (solar radiation) 2 were present; this is to be expected since both solar gravity 
and radiation contain only frequencies that are integral multiples of 1 c/d, apart from annual 
variations. 

The frequencies of the major solar and lunar tides (i.e. the lines in the spectra of solar and 
lunar gravity) are shown in table 2, based on Doodson (1922). 

TABLE 2. PREDOMINANT SOLAR AND LUNAR TIDES (DOODSON 1922) 

origin 
(solar or amplitude, A frequency 
lunar) symbol (relative) argument, D (c/d) 

L Mm 3389 s-p 1/27.55 = 0.03629 
L Mf 6423 2s 1/13.66 = 0.07320 
L 0 1 36814 7-S 1-1/14.19 = 0.92954 
S P1 17147 t-h 1-1/365 = 0.99726 

{~ K1m 35392 7+S 1 + 1/365 = 1.00274} 
K1a 16427 t+h 1+ 1/365 = 1.00274 

L N2 6832 27-S+P 2-1/9.6 = 1.89598 
L M2 35682 27 2-1/14.8 = 1.93227 
S 82 16615 2t 2 = 2.00000 

The arguments are: 

7 = local mean lunar time, increasing by 360° -12°.1907 per solar day, 
S = Moon's mean longitude, increasing by 13°.1764 per solar day, 
h = Sun's mean longitude, increasing by 0°.9856 per solar day, 
P = longitude of Moon's perigee, increasing by 0°.1114 per solar day 
(t = local mean solar time, increasing by 360° per solar day.) 

N.B. 360/12.19 = 29.53; 360/0.9856 = 365.26; 12.19+0.98 = 13.17. 
These are related by 

7 + S = t + h = sidereal time. 

The components of the tidal potential are given by 

A x 10-5 G sin Dt 

where A is the relative amplitude (column 3), G a gravitational constant (Doodson 1922), D the argument 
(degrees/solar day), and t the time (solar days). 

(a) Section of spectrum 0 to 0.45 c/d 

The amplitudes at zero frequency of the Abinger and input spectra are zero because the mean 
of each epoch of data was made zero before Fourier transformation, for all three series. The peaks 
in the three spectra at the second and third estimates are caused by slow (i.e. periods of 1 year or 
more) trends in the data and are of no concern here. The highest remaining amplitude in this 
region of the Abinger spectrum is at 0.0703 c/d, the frequency of the main peak in the lunar 
input spectrum: this peak is the lunar semi-monthly line, which results from the interaction of 
the lunar semi-monthly tide (Mf, see table 2) with the mean conductivity (the reason for the 
displacement of the Abinger and lunar input peaks by one frequency interval from the expected 
frequency of 0.0732 c/d is unknown). Although there is no high value of coherence at this 
frequency, there is little doubt that this peak in the Abinger spectrum is a lunar variation; its 
amplitude is 0.15'. The autocorrelation power spectrum (figure 1), also shows a ripple on the 
continuum level at 0.07 c/d-the power in this peak corresponds to a variation of amplitude 0.7', 

i.e. the power estimates are heavily biased by noise. 
No other lunar or solar variations appear in the Abinger spectrum in this region. 

21 Vol. 268. A. 
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(b) Section of spectrum 0.75 to 1.2c/d 

The Abinger spectrum shows a prominent peak at 1 c/d, and both lunar and solar input spectra 
have peaks atthis frequency, but the absence of any other large peaks in this region of the Abinger 
spectrum indicates that the 1 c/d magnetic variation is almost purely of solar origin. There is no 
peak in the Abinger spectrum corresponding to the main lunar peak at 0.93 c/d, and no such 
peak shows in the autocorrelation spectrum (figure 1), or in the high resolution spectrum to be 
presented in § 7 (figure 4), yet Leaton et ala (1963) find a variation of amplitude 0.095' at this 
frequency. A lunar magnetic variation of frequency ca. 0.93c/d would arise both from the lunar 
diurnal tide (01) interacting with the mean ionospheric conductivity, and from the lunar semi­
diurnal tide (M2) interacting with the solar diurnal variation of conductivity; the lunar diurnal 
tide has not been detected in the atmosphere (Lindzen 1967), but the latter contribution should 
be readily detectable, and no explanation is offered for this missing line. 

Since no lunar line at 0.93 c/d appears in the Abinger spectrum, what little correspondence 
there is between lunar input and Abinger peaks at 1.037,1.069, 1.11 and 1.146c/d is almost 
certainly coincidental. There is also no solar or lunar input peak to account for the Abinger line 
at 0.961 c/d. The regularity, and the asymmetry, of these sidebands (which were noted before in 
the discussion of the autocorrelation spectrum) cannot be explained by the lunar or solar models 
used here. These sidebands of the 1 c/d line are discussed further in § 6 (f). 

(c) Section of spectrum 1. 75 to 2.2 c/d 

The two prominent Abinger peaks are at 1.932 and 2.0c/d, which are the lunar and solar 
semi-diurnal frequencies. Although both input spectra have peaks at 2 c/d, as before the magnetic 
variation must be attributed to solar causes. The lunar semi-diurnal variation is the largest lunar 
variation present in magnetic records; its amplitude at Abinger is 0.24', and the coherence 
between the lunar model and Abinger data has the exceptionally high value of 0.93• The power 
in the third largest lunar peak, at 1.89 c/d, is at most one-twentieth of the power of the lunar semi­
diurnal peak, so the absence of a corresponding peak in the Abinger spectrum is not unexpected. 

(d) Section of spectrum 2.75 to 3.2c/d 

The solar terdiurnal magnetic variation is prominent. There is coherence of 0.6 between a 
slight peak in the Abinger spectrum and the main lunar peak at 2.931 c/d: as already noted, this 
peak appears in the autocorrelation spectrum (figure 1), but it may now be identified as a 
magnetic variation and not a noise fluctuation. 

(e) Section ofspectrum 3.75 to 4.2c/d 

Only the harmonic of the solar daily variation shows in this region. There is a very slight rise 
in the Abinger spectrum at the main lunar frequency of 3. 932 c/d, but the coherence is zero there. 

In table 3 the amplitudes and phases of the main lunar and solar magnetic variations are 
listed, together with the amplitudes found by Leaton et ala (1963) using the Chapman-Miller 
method. There is excellent agreement between the results obtained by the two methods. 

Leaton et ala (1963) also searched for lunar magnetic variations produced by the lunar diurnal 
tide which they assume to have a frequency of 1.932/2 = 0.966 c/d. However, the principal peak 
in this region of the lunar gravity spectrum is at 0.930c/d (see table 2), so their negative results 
are explained. 

The smallest magnetic variation listed has an amplitude less than the precision of the data 
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(0.1'). In the presence of noise, signals of amplitude less than the unit of measurement may be 
detected, i.e. noise increases the sensitivity of a digital measuring device. Given a sufficient length 
of data, there is no lower limit to the amplitude that can be detected. 

TABLE 3. THE PRINCIPAL SOLAR AND LUNAR MAGNETIC VARIATIONS PRESENT IN 

ABINGER DECLINATION DATA 

frequency 
(cjd) 
0.702 
1.0 
1.932 
2.0 
2.935 
3.0 
4.0 

amplitude 
(min of arc) 
0.15±0.02 
3.09± 0.10 
0.24± 0.02 
1.96± 0.14 
0.09±0.004 
0.80±0.03 
0.27±0.02 

phase lag of 
Abinger 

(deg) 
4±60 

-43±7 
-44± 10 
-60±5 
-33±50 
-46±7 
140± 60 

(f) Sidebands of the 1 c / d line 

Leaton et ale 
amplitude 

(min of arc) 

2.91 
0.23 
l.88 
0.074 
0.79 
0.30 

The lunar and solar models satisfactorily explain all lines in the Abinger spectrum except the 
sidebands of the 1 c/d peak at 1 + 0.037nc/d, n = -1, + 1, 2, 3, 4. The frequency 0.037 = ir 
suggests a mechanism related to solar rotation. 

Owing to the Sun's rotation of approximately 27 days there is a 27-day recurrence tendency 
in magnetic storms. A strong 27-day periodicity in magnetic activity indices is well established 
(see, for example, Shapiro & Ward 1966) and, since there is an increase in the solar diurnal 
magnetic variation with increasing magnetic activity (Leaton et ale 1963), there will be a 27-day 
period modulation of the solar diurnal magnetic variation. 

The solar rotation presumably influences the solar diurnal magnetic variation by the same 
mechanism as the sunspot cycle, i.e. through a change in ionospheric conductivity. The 1 c/d 
line in the Abinger spectrum is principally generated by the interaction of the solar diurnal tide 
with the mean conductivity; the 1 ± l7 c/d sidebands therefore imply a 27-day period modulation 
of the mean ionospheric conductivity. 

If this is the true mechanism, then similar sidebands of the 2 c/d line are expected. No predic­
tion of the relative magnitudes of the two sets of sidebands can be made, so that the absence of 
sidebands at 2 ± 0.037n c/d does not disprove the solar rotation mechanism. 

The lunar semi-diurnal magnetic variation (1. 932 c/d) arises from the lunar semi-diurnal tide 
and the mean ionospheric conductivity, and so this lunar line would be expected to show side­
bands at 1.932 ± 0.037 c/d. However, the sidebands of the 1 c/d line have an amplitude less than 
lo that of the 1 c/d line itself, and lines io of the amplitude of the lunar peak (i.e. ca. 0.02') would 
be undetectable. 

Harmonics of the 27-day solar rotation effect would produce lines at 1 ± k/27 c/d, 
k = 2,3,4, .... Such lines are seen only above 1 c/d, and this asymmetry is not predicted by any 
model requiring low frequency (e.g. l7 c/d) modulation. The lunar magnetic variations appear 
as asymmetric sidebands of the solar lines only because the lunar frequencies are high, i.e. close 
to 1, 2c/d. 

7. HIGH RESOLUTION POWER SPECTRUM 

Banks (1968) has found a peak at a frequency of approximately l7 c/d in the spectrum of 
Abinger horizontal and vertical magnetic data. Banks attributes this line to the recurrence 
tendency of magnetic storms, and supports this view by demonstrating that the observed width 
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Fourier transform). Noise has not been removed from the estimates. !if = 0.000493 c/d. 
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of the line (ca. 0.009c/d) agrees well with simple models of magnetic storms. The large width is 
due to the finite number (up to about six) of recurrences ofa given storm before it disappears, and 
the irregular occurrence of solar active regions that are the cause of storms. 

To determine whether the sidebands of the solar diurnal line in the Abinger declination 
spectrum may reasonably be attributed to the solar rotation mechanism, a high resolution 
spectrum was computed. Six years of Abinger declination data (27360 points, 1 Jan. 1951 to 
29 Mar. 1957) were multiplied by a data window and Fourier transformed. The square of the 
Fourier transform was smoothed with weights 1, i, ! to reduce the fluctuations of the estimates 
(which contain noise and signal power) without losing too much resolution. In figure 4 the 
spectrum from 0.89 to 1.15c/d and from 1.91 to 2.04c/d is shown. 

The peaks are inconspicuous because of the very extended horizontal scale (J1.1 = 1/2280 = 

0.000439 c/d), but the lines previously discussed may be seen as bands at 0.962, 1.034, 1.073, 
1.110 and 1.147 c/d. The width of these bands, approximately 0.008c/d, contrasts with the width 
of the solar diurnal peak of 0.0013 c/d (which is the natural width of a sinusoidal signal, for the 
present length of data and degree of smoothing), and substantiates the view that these sidebands 
arise from solar rotation. 

Analysis at this resolution also splits the solar diurnal and semi-diurnal peaks into lines at 
1, 2c/d and sidebands at ± 0.0027, ± 0.0055 c/d (1/365 = 0.00274). There is a large annual 
variation in the solar radiation incident on the atmosphere at Abinger, and since the ampli­
tudes of the solar diurnal and semi-diurnal lines are affected by solar radiation both through 
the solar atmospheric tide and through the conductivity of the ionosphere, the annual radiation 
change will produce both annual and semi-annual sidebands. The ratio of power in the main 
peak to the annual and semi-annual sidebands is close to I : 0.1: 0.0l. This implies, somewhat 
surprisingly, that there is a large change in the solar daily variation with season, the summer 
amplitude being of order three times the winter amplitude. Leaton et ale (1963) find a ratio of2.2 
between the maximum (June) amplitude and the minimum (December) amplitude. 

No 27-day sidebands of the lunar semi-diurnal line at l.932 c/d are seen in the high resolution 
spectrum, but, since there is an annual change in the mean ionospheric conductivity, splitting of 
the line is expected. The peaks at l.935 and l.927, and the minor peak at l.9295, may be merely 
noise fluctuations, but they are exactly where annual and semi-annual sidebands would be 
expected. None of these peaks on its own is significant, but together they almost certainly represent 
splitting of the lunar semi-diurnal magnetic variation. 

8. CONCLUSIONS 

The amplitude spectra obtained here (top panels offigure 3) have high stability, in the sense 
that the ratio of 'data points used' to 'frequency estimates obtained' was 34. The method 
developed here is not suitable where the data are limited and low stability spectra are required 
(to obtain sufficient resolution), as in the high resolution analysis in § 7. In this latter case, noise 
cannot be removed from the spectral estimates, and the frequency analysis will not give reliable 
values for the amplitudes of the lines in the spectrum. 

With the use of epochs of data of length ca. 1 year, the method may be used to, say, determine 
amplitudes of magnetic variations at different parts of the sunspot cycle. One cannot select days 
for analysis, so that it is not possible with this method to determine amplitudes at, say, different 
levels of magnetic activity. It is also not possible to determine amplitudes at different seasons of 
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the year, or for each month of the year, since then the epochs of data would be so short (4 months 
or 1 month respectively) that the lunar and solar lines would not be adequately resolved. 

The above are the limitations of the method of time series analysis developed here. The 
advantage of the method is that it provides a fast computational route to an amplitude spectrum 
from which numerical values may be obtained, since the estimates are free of systematic bias. 

I am grateful to Professor Sir Edward Bullard, F.R.S., for advice throughout this research, and 
to Dr R.J. Banks and Dr 1. Scollar for many helpful discussions. I thank B. R. Leaton of the Royal 
Greenwich Observatory, Herstmonceux, and Dr W. H. Munk for supplying me with data. 

ApPENDIX A. RELATION BETWEEN AUTOCORRELATION POWER ESTIMATES 

AND FOURIER TRANSFORM POWER ESTIMATES 

Let the real data series by Xi' j = (0, N -1). Take N to be even. Define the discrete direct 
Fourier transform Yk by 

where W = exp (i2rrJN). 

1 N-l 
Yk = - .~ Xi Wik [k = (0, N-l)], 

N ,1=0 

Therefore the Fourier transform power estimates, Fk , are 

1 (N-l ) (N-l ) Fk = YkYt = N2 .~ Xi Wik ~ Xi W-lk 
}=o 1=0 

1 N-l N-l . 
= 2 ~ ~ Xi Xi Wk0-l). 

N i=O 1=0 

For j > I, putj -I = p; for j < I, put 1-j = q, giving 

Define 

1 (N-l N-l-p N-l N-l N-l-q ) 

Fk = N2 P~l 1~0 Xl+pXl Wkp+ 1~0 X,X,+ q""f
1 

1~0 XiXj+q W-kq . 

1 N-l-m 

em = N ~ Xi+mXi, 
1=0 

(A 1) 

(A2) 

(A3) 

(A 4) 

where em is a biased estimate of the sample autocorrelation function (the unbiased estimate is 
CmNJ(N-m)). 

Thus 
[k = (0, N-1)]. (A5) 

Since Fk = FN - k, there are only iN + 1 independent power estimates; k = iN corresponds to the 
Nyquist frequency. 

Therefore 
[k = (0, iN)]. (A 6) 

The autocorrelation power estimates, at M lags, are given by (Blackman & Tukey 1958): 

[k = (0, M -1)]. (A 7) 

Therefore, at maximum resolution, i.e. N lags, 

[k = (0, N-1)]; (A 8) 
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and there are N independent power estimates. The Fourier transform contains phase as well as 
amplitude information; in calculating power from Fourier transforms, the phase information is 
lost, so that only half as many power estimates may be obtained from the Fourier transform as 
from the auto-correlation function. 

Now let equation (A 1) hold for k = half-integers = !P, giving 

[p = (0, N)]. (A9) 

Therefore Fin = A;r for n = (0, N -1) and, for n even, the autocorrelation power estimate is 
identical to the Fourier transform power estimate. 

For n = 2P+ 1, A2P+1 = F¥2P+l). The set F i(2P+l) may be expressed in terms of the set Yk : 

F-!<2P+l) = IY!<2P+l)12, 

N-l N-l N-l 
Yi (2 +1> = ~ X· Wij(2p+l) = ~ Al ~ Xj Wj'. 

P j=o:J 1=0 ;=0 

Equating coefficients of Xj gives 

Therefore 

N-l 

exp[i1r(2p+ I)j/N] = ~ Azexp (i2rrjl/N). 
j=O 

1 N-l 

Al = N j~O exp[hrj(2p-21+ I)/N] [I = (0, N-I)] 

2 
- N(I-exp [i2rr(p-l+ !)/N]) 

= i/rr(p-I +!) for Ip-I1 4; N. 

(A 10) 

(A 11) 

(A 12) 

(A 13) 

Since Fi (p+l) = (~~ol) A, y,) 2, it is apparent that (i) the major contributions to Fi(p+l) are from 

the Y1 for which Ip -II 4; N, and (ii) the odd autocorrelation power estimates, at maximum 
resolution, contain the phase information. 

Autocorrelation power estimates at fewer lags are weighted combinations of the A~. It is 
easily shown that AjI and A~ are related by 

where (A 14) 

Yk peaks at jiM = kiN and has value MIN there. 
The foregoing discussion has been simplified by omitting data and lag windows. Such windows 

are equivalent to replacing the Yk and Ak by weighted sums of themselves, and would obscure 
the above relations without significantly changing them. 
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ApPENDIX B. PHASES 

(a) The phase oj a Fourier transform estimate 

Let the data series by G cos (21Tft + ¢) given for 0 ~ t ~ T at N points 0, /).t, ... , (N - I) ~t. 
Take N to be even. The discrete Fourier transform gives estimates at frequenciesJ' = k~f, where 
k = (0, iN) and ~f = IJT. We wish to find the phase of an estimate atJ' = n~f= J-5f The 
phase is given by - tan-1(B/A), where B, A are the sine and cosine transforms respectively of 
the data series. 

Before the transforms are taken, the data series is multiplied by a cosine bell window. In the 
following, summations are replaced by integrals; the results will subsequently be shown to be 
correct in the discrete case. 

The cosine transform is 

A(f') = foT 

lCeos (2trft+~) (I-cos (2trtjT)) cos (2trf't) dt 

= (G /161T ) [sin (21T T 'OJ + ¢) - sin if>] 

(
2 I I 2 I I) 

x 5J-5f-~f-Sf+~f+ J+J'-J+J' -~f~ J+J' +~f . 
The sine transform is 

B(f') = foT 

IC cos (2trft + ~)[ I - cos (2trtj T)] sin (2T[{' t) dt 

= (GJI6rr) [cos (2rrT 5J+ if» - cos if>] 

(
2 I I 2 I 1) 

x 5f-5f-~f-Sf+~f-J+f'+ J+!' =-~f+ J+J' +~f • 

Put 'OJ = x~j, then A(f') = (GJI61T) [cos (lTx+if» cosrrx] (a-b), 

and B(f') = (GJI6lT) [-sin (lTx+if» sinlTx] (a+b), 

where a = -2TJx(x-l) (x+I), 

b = - 2 TJ (2n + x) (2n + x - I) (2n + x + I). 
The phase ()f' is given by 

() f' = - tan -1 [ - F (n, x) tan (IT X + 1»], 

(B I) 

(B 2) 

(B 3) 

(B 4) 

(B 5) 

where F(n, x) = (a-h)J(a+h). For x < I, n;;;:: I, F(n, x) ~ 1 (thus for x =1/~3 and n = 1, 
F = 1.05; for x = ! and n = 10, F = 1.00009), so that 

()f'~ (lTx+if» +P1T, wherep is an integer. (B 6) 

The signs of A, B show that p must be even. 
If x = 0, i.e.J = J', then ()f' = if>, so that, if a signal has a frequency exactly k/ T, the phase is 

correctly given at estimate k. If the signal has frequency (k+x)/T, x < I, then at the nearest 
estimates k and k + I the phase will be incorrect by XlT and (x - 1) IT respectively. 

The equation ()f' = 1TX + ¢ has been derived for the continuous case. Numerical calculations 
show that it also holds for the discrete case. The discrete Fourier transform of a series 
cos (2-rr30.9j/400),j = (0,399) gave for the phase at estimates 30, 31 and 32 angles of + 2.8274, 
-0.31414, +2.8274rad respectively. For these three estimates x = 0.9, -0.1, -1.1, so that the 
calculated phase in the range ( -11, IT) is exactly 1TX. 
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The above derivations show that unless the frequency of a signal is known exactly (i.e. x is 
known) then the Fourier transform estimate of phase gives no information about the phase of 
the signal at time t = O. In the absence of noise, the estimated phase does however give the phase 
of the signal at time t = ! T; 2nfi T = n(n + x) and, if n is even, the estimated phase is the signal 
phase at t = iT, or, if n is odd, the estimated phase differs by 71" from the true phase. Thus in the 
numerical example above, the phase at t = iT is 0.91T, and this is the value obtained at 
estimates 30, 32. 

(b) The phase between Fourier estimates from different epochs 

Let the start times of two blocks of data differ by ~ T, and assume that the two blocks do not 
overlap (i.e. ~T~ T). Then the phase of a signal of frequency (n+x)dj, 0 ~ n ~ iN-I, 
o :::;; x < 1, will change by 271" (n + x) d T/ T between the start times of the two blocks. Therefore 
the phase of the estimates atf' = n~fwill also change by 2n(n+x) dT/T from the equation 
OJ' = TIX + ifJ proved above. Since x is unknown, the phase change is unknown by 271"xd T/ T, 
which can lie anywhere in (-n, 71"). 

ApPENDIX C. ESTIMATION OF SIGNAL, NOISE AND THEIR STANDARD DEVIATIONS 

(a) Distribution of R j 

Q 

Sj 

Sj' Ni , Rj are the Fourier transforms at one particular frequency of the signal, noise and data 
respectively. Consider all the signal vectors Sj to have zero phase. Use coordinates (r,O) with 
respect to the origin of the noise vectors Ni ) and coordinates (R,a) with respect to the origin of 
the data vectors R i. Assume ISil = S for allj. Then the probability of the point Q lying in an 
area r dO dr is assumed to be 

P(r, 0) rdOdr = (h2/n) rexp (-h2r2) dO dr. (C 1) 

Therefore the probability of R j lying in R da dR is 

P(R, a) RdadR = (h2/n) Rexp [ _h2(R2+S2- 2RScosa)] dadR. (C 2) 

Therefore the probability of Q lying in an annulus dR is 

P(R) dR = (h2/n) Rexp[ _h2(R2+S2)] dR f: 17 

exp (- 2RSh2cosa) da. (C 3) 

Using Abramowitz & Stegun (1965) (subsequently referred to as A. & S.) eqn. 9.6.16 we have 

P(R) = 2h2Rexp[-h2(R2+S2)] Io(2h2RS) , (C4) 

where 10 is the zero order modified Bessel function. 

22 Vol. 268. A. 
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For calculations it is convenient to work with dimensionless numbers R' = hR and S' = hS, so 

that P(R') dR' = 2R' exp [ - (R'2 + S'2)] Io(2R'S') dR'. (C5) 

The probability density function P(R') is shown in figure 5 for various values of S'. For S' = 0, 
P(R') is the Rayleigh distribution; as S' -+ 00, Io(2R'S') -+ exp (2R'S')/,v (4rrR'S') so that 

P(R') -+2R' exp[ - (R' -S')2]/,v(4rrR'S') = ,v(R'/rrS') exp[ - (R' -S')2], (C 6) 
S'--HfJ 

i.e. for large S' (little noise) the distribution becomes a normal distribution centred on R = S. 

1.0 

S~O 

0.8 

0.6 
...--.. 
Q:: 
Q:;' 

0.4 

0.2 

2 3 4 5 

R' 

FIGURE 5. Graph of peR') = 2R' exp[ - (R2 + S'2)] Io(2R'S') for various S'. 

In anticipation of later results we note that the expectation of Rn, E{Rn}, is 

E{Rn} = fooo 

2h2Rn+1 exp[ _h2(R2+S2)] Io(2h2RS) dR 

= exp (_h2S2) F(i(n+ 2)) M(l(n+ 2),1, h2S2)/hn (A. & S., 11.4.28), (C 7) 

where F(x) is the gamma function and M(a, b, c) is the confluent hypergeometric function. 
Hence 

and 

E{R} = (F(l)/h) exp (_h2S2) M(l, l,h2S2), 

E{R2} = (F(2) /h2) exp ( - h2S2) M(2, 1, h2S2) 

= (exp ( - h2S2) / h2) (1 + h2S2) exp (h2S2) 

= S2+ 1/h2• 

(C 8) 

(C9) 

This result for E{R2} shows that for this model the power estimates R~ are positively biased, 
and that the expectation of the total power is simply the sum of the signal power and the 
expectation of the noise power. 

A further result needed later is 

E{Rll(2h2RS)/Io(2h2RS)} = 2h2 exp (_h2S2) fooo 
R2I1 (2h2RS) dR 

= S (A. & S., 11.4.28). (C 10) 
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(h) Maximum likelihood equations 

We follow Kendall & Stuart (1967) here. 
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peR) is a function of two parameters, Sand h. Let P(Rj; S, h) be the value of peR) evaluated 
at R = Ri . Consider a sample of p points and define the likelihood function L by 

L(RI' R2, """' Rp; S, h) = peRl; S, h) P(R2; S, h) """ P(Rp; S, h) 

(C II) 

Maximize In L with respect to Sand h to obtain the maximum likelihood equations for ~ and h 
e estimates of S, h): 

Setting 

gives 

a~~L = _ 2ph2S + ~ 2h2Rj1l(2h2RjS)110(2h2RjS), 
J 

a~~L = 2plh- 2phS2- 2h ~R~+ ~ 4hRjS11(2h2RjS)110(2h2RjS). 
J J 

alnL = alnL = 0 
as ah 

~R~/P = 82 + I/h2
, 

j 1 

"'ERj11(2h2Rj8)/10(2fi2Rj~) = p~. 
j 

(C 12) 

(C 13) 

(C 14) 

(C 15) 

Since E{R2} = S2+ I/h2, E{R11/10} = S, equations (C 14) and (C 15) give unbiased estimates 
of Sand h. 

These equations may be solved in principle by finding the minimum of 

[~R~ - P (82 + II h2) ] 2 + [p~ - ~Rj 111/0] 2; 

this function is zero when equations (C14) and (C 15) are satisfied, and positive everywhere else 
(except at ~ = 0). 

When this method of solving (C 14) and (C 15) was applied in the Abinger analysis, it was 
found that the available function minimization programs had trouble with the shape of the 
function, and took an excessive number of iterations to get sufficiently close to the zero. Alterna­
tive estimates of Sand h had to be used, and a method was found that gave the same values (to 
the accuracy required) as equations (C 14) and (C 15). 

We have 

Let R = E{R}, then 

Also 

( c) Alternative estimates of signal and noise 

var (R) = E{R2}- (E{R}) 2 

= S2+ I/h2- (r(!) M( -!, I, _h2S2)lh)2. 

varieR) _ (S'2+ 1- (r(!) M( -!, I, -S'2) )2)! 
R - ret) M( -!, I, -S'2) 

= function of S' only 

SIR = S'lr(I)M( -i,l, -S'2). 

(C 16) 

(C 17) 

Figure 6 shows vari (R) I Rand SI R, both as functions of S'. From the p values of Rj, vari(Rj ) I Rj 
gives Sf; this value of Sf and Rj give 8, and hence k also. 

22-2 



260 D. I. BLACK 

The maximum likelihood estimates of Sand h are the desired estimates. Numerical trials 
showed that the estimates of Sand h obtained from equations (C 16) and (C 17) were the same 
as the estimates of Sand h obtained from the maximum likelihood equations ((C 14) and (C 15)). 
Having established that the estimates from equations (C 16) and (C 17) were also maximum 
likelihood estimates, this alternative route was used in the Abinger analysis. 

1.0 

0.8 

0.6 

0.4 

0.2 

0 1 2 3 4 5 
Sf 

FIGURE 6. Curves ofvarf(R)/R and SIR each as a function of S'. 

(d) Distribution of the maximum likelihood estimates of Sand h 

The method follows Kendall & Stuart (1967). As the sample size P-+oo the estimates tend to 
be distributed in bivariate normal form. The variances of the estimates Sand h, and their 
covariance, may be found in terms of the true values S, h of Sand h. 

Let $1 = estimate of S, $2 = estimate of h, then 

(C 18) 

where L1 is the determinant: 

L1 = IfOC! (8InP(R)) (8InP(R)) P(R)dRI, 
- OC! 81>1, rp. 8ifJj rpj 

(C 19) 

and L11,j is the minor of the ith row andjth column. 
Thus 

L122 = foOC! (8~~P): P(R) dR 

= 4h4( - S2 + E{R2I¥(2h2RS) /I~(2h2RS)}). 

No analytical evaluation of E{R2Ii/I~} has been obtained, but numerical integrations show that 

E{R'2IH2R'S')/I~(2R'S')} = S'2+ X(S'), 

where 0 ~ x < i for 0 ~ S' < 00. x is plotted as a function of S' in figure 7. 

Therefore 

Similarly 

and 

L111 = 4(1- 2h2S2(1- 2x)) /h2, 

Ll21 = L1l2 = - 4hS(I- 2x). 

(C20) 

(C21) 

(C22) 

(C23) 
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From (C 18), var (8) = (1- 2h2S2(1- 2x))j4ph2(x-h2S2(1- 2x)), 

var (h) = h2xj4p(x-h2S2(1- 2x)), 

and correlation of 8 and h = cor (8, h) = cov (8, h) jvar! (8) var! (h) 

= h2S2(1- 2x)jx(1- 2h2S2(1- 2x))t 
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(C24) 

(C25) 

(C26) 

Sand h are unknown, but approximate values ofvar (8), var (h), and cor (8, h) may be obtained 
by substituting 8 for S, h for h, and using h8 to find x from figure 7. 
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0.2 
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1 2 3 4 

s' 
FIGURE 7. x = E{R'2If/I~}-S'2, as a function of S'. 

(e) Test of goodness of fit between P (R) and the sample distribution of Ri 

vVe wish to test the hypothesis that the sample Ri,j = (l,P), is a sample from the distribution 
P(R) derived in appendix C (a). Seventeen Ri were calculated at each frequency in the analysis 
of Abinger data, but this is too small a sample to use a X2 goodness of fit test. 

Instead the Kolmogorov-Smirnov test may be used. The true values h, S of the parameters 
of the parent distribution P(R) are unknown, but estimates h, 8 may be obtained from the Ri . 

The Kolmogorov-Smirnov test assumes that the parent distribution is known exactly; the esti­
mation of parameters of the parent distribution from the sample gives, in some sense, the best 
fit between the parent and sample distributions. Thus a good fit is to be expected, but, if the 
test shows the fit is bad, then the hypothesis that the sample Rj has a distribution of the form P(R) 
(for any h, S) must be rejected. 

Define G(x) as the cumulative distribution function 

G(x) = f: P(R') dR' 

and define Gp(x) as the empirical cumulative distribution function 

= 0 (x < R~), 

Gp(x) = jjp (Rj ~ x < Rj+l), 

= 1 (R; ~ x). 

Kolmogorov's statistic is Dp = least upper bound IG(x) - Gp(x) I, and the distribution of Dp is 
independent of the distribution of G(x). Birnbaum (1952) has tabulated Prob (Dp < kjp), 
k = (l,p). 
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In figure 8 are plotted G(x) and Gp(x) for frequency 0.0205 c/d, at which the signal is significant 
at the 99 % level. At this frequency, the estimates of S, Us are 0.080, 0.016 min, and of k, Uh are 
14.9 and 3.7 min-I. hS = 1.20, so that G(x) is the curve 

f: P(R') dR evaluated for S' = 1.2. 
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FIGURE 8. Kolmogorov-Smirnov test for the RI at 0.0205 cld, at which frequency the estimated value of S' is 1.2. 
The curve is 

G(x) = L~ peR') dR' 

with S' = 1.2; the step functio~ is Gf)(x) = 0 for x < R~; = jlp for R; ~ x < R;+l; = 1 for R; ~ x. The 
greatest value of I Gf)(x) - G(x) lIS 0.074. 

From figure 8, D17 = 0.074, and from Birnbaum Prob (D17 < 0.074) = 0.003. The fit is therefore 
exceptionally good. 

For frequency 0.0322 cjd, at which there is no significant signal, the test gives a probability of 
0.61 for Dl7 to be less than the observed value, i.e. the fit is neither very good nor very bad. 

The Kolmogorov-Smirnov test therefore gives no grounds for changing the assumptions that 
the signal is constant from epoch to epoch and that the noise has a Rayleigh distribution. 
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